
Torc: Towards an Open-Source Tool Flow

Neil Steiner1
neil.steiner@isi.edu

Aaron Wood1,2

awood@isi.edu
Hamid Shojaei1,3

shojaei@wisc.edu

Jacob Couch4

jacouch@vt.edu
Peter Athanas4

athanas@vt.edu
Matthew French1

mfrench@isi.edu

1Information Sciences Institute
University of Southern California

3811 N Fairfax Dr, Ste 200
Arlington, VA 22203

2Department of Electrical Engineering
University of Washington

185 Stevens Way
Seattle, WA 98195

3Dept of Electrical and Computer Engr
University of Wisconsin-Madison

1415 Engineering Drive
Madison, WI 53706

4Dept of Electrical and Computer Engr
Virginia Tech

302 Whittemore Hall
Blacksburg, VA 24061

ABSTRACT
We present and describe Torc—Tools for Open Reconfig-
urable Computing—an open-source infrastructure and tool
set, provided entirely as C++ source code and available at
http://torc.isi.edu. Torc is suitable for custom research ap-
plications, for CAD tool development, and for architecture
exploration.

The Torc infrastructure can (1) read, write, and manip-
ulate generic netlists—currently EDIF, (2) read, write, and
manipulate physical netlists—currently XDL, and indirectly
NCD, (3) provide exhaustive wiring and logic information
for commercial devices, and (4) read, write, and manipulate
bitstream packets (but not configuration frame contents).
Torc furthermore provides routing and unpacking tools for
full or partial designs, soon to be augmented with BLIF
support, and with packing and placing tools.

The architectural data for Xilinx devices is generated from
non-proprietary XDLRC files, and currently supports 140
devices in 11 families: Virtex, Virtex-E, Virtex-II, Virtex-
II Pro, Virtex4, Virtex5, Virtex6, Virtex6L, Spartan3E, Spar-
tan6, and Spartan6L. We believe that Altera architectures
and designs could be similarly supported if the necessary
data were available, and we have successfully used Torc in-
ternally with custom architectures.

Categories and Subject Descriptors: J.6 [Computer
Applications]: Computer-Aided Engineering

General Terms: Algorithms, Design, Standardization.

Keywords: C++, FPGA, place, route, unpack, EDIF,
XDL, XDLRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’11, February 27–March 1, 2011, Monterey, California, USA.
Copyright 2011 ACM 978-1-4503-0554-9/11/02 ...$10.00.

1. INTRODUCTION
Modern FPGAs are complex devices, and the designs tar-

geting them are often described in complex file formats. As
a result, researchers either have to work with simplified files
and models, or have to invest significant development effort
into parsers, object models, and large routing graphs.

Special requirements on a large project forced us to de-
velop custom tools for internal use, which we are now repack-
aging and releasing to the research community as an open-
source project. One aim is to provide real device data, and
thereby increase the relevance of the CAD tools that are fre-
quently developed by researchers. Another aim is to provide
a framework for device and design data, allowing researchers
to focus on the unique and novel aspects of their work, in-
stead of being waylaid by infrastructure development.

Device manufacturer data is often sensitive and propri-
etary, and we ensure that the data and capabilities under-
lying Torc—including exhaustive device databases—are de-
rived from publicly available sources. As a result of this,
Torc can manipulate bitstream packets and configuration
frames, but does not understand frame contents.

We divide Torc into a collection of Application Program-
ming Interfaces (APIs) and Tools: The generic netlist API
supports unmapped netlists, most commonly EDIF. The
physical netlist API supports mapped netlists, with or with-
out placement or routing information, most commonly XDL.
The device architecture API provides exhaustive wiring and
logic information for supported commercial or experimental
devices. And the bitstream API supports Xilinx bitstream
packets and frames.

The router tool creates connections for anything from in-
dividual wires to entire designs. And the unpacker tool ex-
pands compound blocks such as SLICEs into constituent
Look-Up Tables (LUTs), flip-flops, and muxes. Two tools
still in development are the packer tool, which recombines
what the unpacker has expanded, and the placer tool, which
assigns physical locations to design logic elements.

We provide background information in Section 2, and then
describe the Torc design in Section 3, the API in Section 4,
and the associated CAD tools in Section 5. We finally con-
sider applicability in Section 6 and conclude in Section 7.

EDIF Importer EDIF Exporter

Device
Architecture

XDL ExporterXDL Importer

DRC

Generic
Netlist

Physical
Netlist

Packer Unpacker

PlacerRouter

EDIF

BLIF Importer BLIF ExporterBLIF

EDIF

BLIF

XDL

BIT

XDL

BIT

Mapper

DB ReaderDB

Unmapper

Path Extraction Timing Model

Bitstream
Frames

VPR

BIT Reader BIT Writer

Synplify,
XST, ...

ODIN II,
ABC, SIS, ...

torc::generic

torc::physical

torc::architecture

torc::bitstream

Figure 1: Torc block diagram. Red dots indicate components still under development.

2. BACKGROUND
Torc functionality is heavily based on prior work, much

of it previously unreleased for reasons beyond our control.
Torc’s Device Database is a direct descendant of ADB [11],
originally developed in conjunction with the JBits [5] project,
and later to become the foundation of a completely rewritten
but unreleased version of JBits.

We know of no other API or tool set comparable to Torc,
other than friendly competition from our collaborators at
Brigham Young University (BYU) [6]. There are however a
number of important related tools, some of which we hope to
interface with to mutual advantage. In doing so, we believe
we can usefully expand the number of research tool flows
described on the fpgaCAD web site [4].

At the mapped netlist level, VPR [1] is the de facto place-
and-route tool for research, and has been used for modeling
in the development of recent Altera architectures [7]. At
the mapped netlist level, many groups have dabbled with
XDL designs or XDLRC device data, but few if any of those
efforts have resulted in open toolsets.

Torc aims to be reasonably architecture independent, but
is strongly influenced by the disparity in device and design
information available for Xilinx and Altera architectures.
While Xilinx provides insertion points and architecture data
necessary for changes after synthesis, after mapping, after
place-and-route, and even after bitstream generation, the

available insertion points and architecture data for Altera
devices are insufficient for our needs.

Despite the limited access to Altera wiring data and low-
level implementation files, we believe that Torc’s architec-
ture API could represent Altera architectures, and that the
physical netlist API could probably describe low-level Al-
tera circuit implementations. The same is not true for the
bitstream API, which is derived almost entirely from config-
uration information in Xilinx device user guides.

3. DESIGN
Torc’s major components are depicted in Figure 1. The

APIs are shaded in blue and are designated on the right ac-
cording to their respective C++ namespaces. The tool sets
are shaded in gray, and are positioned between the APIs
that they depend upon. Input and output file types are
labeled in green. The components still undergoing devel-
opment or integration have red dots in their upper right
corners, while the components not yet scheduled for devel-
opment are grayed out. The remainder of the color coding
reflects internal task assignments for ISI, Virginia Tech, and
Interra Systems.

Also present on the left of the diagram are groups of tools
that we hope to interface with, including commercial syn-
thesis engines by way of EDIF files, and academic synthesis
and optimization tools by way of BLIF files. We also hope

to supply routing graphs for real devices to VPR, further
confirming and extending its usefulness.

4. API
The core functionality of Torc is encapsulated in the four

databases depicted in Figure 1: The generic netlist API, the
physical netlist API, the device architecture API, and the
bitstream API.

4.1 Generic Netlist
The generic netlist API supports netlists that are not

mapped to physical primitives in a target device. The API
supports the ubiquitous EDIF 2 0 0 Level 0 [3], and can ma-
nipulate the NETLIST view type. Support for the academi-
cally popular BLIF format is still under development, and is
intended to provide compatibility between Torc and existing
research tools and flows.

The API includes EDIF importers and exporters, and is
built around an internal netlist object model. The EDIF
support and the object model were developed for us by In-
terra Systems, Inc., a company with significant expertise in
front-end language analyzers, and with a customer base that
includes some of the largest EDA vendors.

The generic netlist API can be used to access all of the cir-
cuit design elements, including libraries, cells, views, ports,
instances, nets, and more. These elements can be queried,
added, modified, or removed, and entirely new designs can
be created from scratch. In addition to circuit manipula-
tion, the API can also flatten netlists, and can provide a
foundation for synthesis or mapping algorithms.

4.2 Physical Netlist
The physical netlist API supports netlists that have been

mapped to physical primitives in the target device. Physical
netlists may include partial or full placement and routing
information, or may be devoid of any such information.

In a manner similar to the generic netlist API, the phys-
ical netlist API can be used to access all circuit elements,
including designs, modules, nets, and instances, along with
their configuration settings and any placement and routing
information.

There are two reasons why physical netlist capabilities
give the user exceptional control over their design: (1) Unlike
the ISE place-and-route tool, Torc allows users to strictly en-
force their requirements, making it possible to generate and
retain arbitrary routes, or to reserve arbitrary resources or
regions of the device. (2) There are no subsequent mapping
or transformation steps performed before bitstream gener-
ation, so the user is guaranteed that any changes will be
retained as applied. Comparable assurances are much more
elusive at the generic netlist level.

4.3 Device Architecture
The device architecture API is built upon proven methods

and representations for very large and irregular devices [11].
A precursor to this code was successfully used in an em-
bedded system, allowing that system to autonomously place
and route new circuitry within itself while continuing to run
[10].

The Device Database includes exhaustive knowledge of
the device wiring and logic, and makes all of that informa-
tion available through the API. It also tracks wire and arc
usage, to prevent contention with existing nets or logic, or

simply to inform routers of resource availability. Further-
more, it provides the physical and bitstream APIs with tile
maps, logic site maps, and usage information.

For router research, including tools such as VPR which
may expect to work within a fully expanded routing graph,
we note that one could expand the graph ahead of time, at
the cost of significant memory overhead.

4.4 Bitstream Interface
The bitstream API supports reading, modifying, and writ-

ing bitstream packets and frames for supported Xilinx ar-
chitectures. We note again that the API can work with
configuration frames but lacks any understanding of frame
contents, since that information is proprietary and undocu-
mented. Unfortunately, no comparable information is avail-
able for Altera architectures.

5. TOOLS
Torc includes CAD tools to perform unpacking and rout-

ing, with packing and placing tools still being developed or
integrated. The tools are provided as source code, rather
than executables, and can serve as guides for working with
the physical netlist API and the device architecture API.
If compiled as standalone executables they can be substi-
tuted into the regular design implementation flow, with a
few stipulations pertaining to timing and to multiple clock
domains.

5.1 Unpacker and Packer
The configurable computing community generally speaks

of packing in the sense of combining logic functions or gates
into LUTs, or of combining LUTs and flip-flops into sim-
ple logic blocks or clusters, mindful of the impact on circuit
performance, but with very few physical rules to constrain
such operations. We use the term here to describe the pro-
cess of combining LUTs, flip-flops, muxes, carry chains, and
other elements into logic block primitives—Virtex SLICEs
for example—while generating the corresponding configura-
tion settings, and respecting device rules.

The value of a logic block packer is that it allows the
user to work with circuitry much more naturally, in terms
of LUTs, flip-flops, and other basic elements. In the com-
mon case of a user working from an existing design, it makes
sense to first unpack it, modify the circuit as needed, and
then incrementally re-pack, re-place, and re-route it. With
the packer still under development, the unpacker neverthe-
less plays an important role by exposing synchronous and
asynchronous circuit elements, to facilitate combinational
path analysis. These combinational paths are then ordered
according to logic level depth, and are used by the placer
and router when prioritizing nets and resources.

5.2 Router
The router constructs paths that connect sources to sinks

for every net, with final results that must meet timing re-
quirements and be free from contention. The Torc rout-
ing capability includes an optional preliminary router, along
with a global PathFinder [8] implementation to resolve net
contention, and an underlying signal router based on an A*
search [9]. We note that it is possible to bypass the prelimi-
nary router, and that it is also possible to invoke the signal
router directly on nets or arbitrary device wires.

Regrettably absent from the available Xilinx architecture
data is any timing information, and even ISE’s timing anal-
ysis tool reports delays for nets rather than their constituent
wires and arcs. Consequently neither the Device Database
nor the router can accurately analyze or guarantee timing.
We alleviate the issue in part by prioritizing long combina-
tional paths and thus reducing the delay of the likely criti-
cal paths. We have also had considerable success modeling
wiring delays based on technology process nodes, but have
not yet integrated the resulting timing data into Torc.

6. APPLICATIONS AND FUTUREWORK
Torc is useful for any application that requires very fine-

grained programmatic control over design implementation.
Sometimes it is necessary to constrain a design in ways that
are not possible with the vendor implementation tools. Tak-
ing the AREA GROUP constraint as an example, although
a user may wish to strictly constrain routing inside or out-
side of a specified boundary, the tools do not always produce
the desired results. But Torc permits the user to allow, dis-
allow, or even require the use of arbitrary routing resources.
The user could also programmatically generate some portion
of their design with the physical netlist API, and add highly
structured placement in the manner of Lava [2].

Torc is also useful as a platform for CAD tool research.
The possibility of broadly linking design information—at the
HDL, generic netlist, and physical netlist levels—opens the
possibility of tightly-coupled interactive incremental debug
and development. We note growing interest in parallel tool
research, but entirely new approaches may also emerge: It
may be feasible to partition designs at the generic netlist
level, and then to perform combined mapping, placing, and
routing on each partition concurrently.

Torc tools still under development include the packer and
placer. Additional capabilities that we hope to add in time
include timing models, constraint file support, design rule
checks, TCL scripting, parallelization, mapping, and sup-
port for other architectures.

7. CONCLUSION
Torc is an open-source C++ infrastructure for reconfig-

urable computing, suitable for custom research applications,
for CAD tool development, and for architecture exploration.
Its primary purpose is to promote and facilitate research, by
providing a framework for device and design data, allowing
researchers to focus on the truly novel and unique aspects
of their work.

The Torc infrastructure can (1) read, write, and manip-
ulate generic netlists—currently EDIF, (2) read, write, and
manipulate physical netlists—currently XDL, and indirectly
NCD, (3) provide exhaustive wiring and logic information
for commercial devices, and (4) read, write, and manipulate
bitstream packets (but not frame contents). Torc’s use of
standard file formats also allows complete simulation and
timing analysis with standard commercial tools.

Torc furthermore provides unpacking and routing tools,
with packing and placing tools still under development. Pack-
ing and unpacking allow users to more naturally work with
basic architecture-independent elements, instead of work-
ing with more complex physical primitive instances. And
though we are not yet deploying device timing models, we
have had good initial success with our internal efforts.

The architectural data included with Torc is derived en-
tirely from non-proprietary sources. We presently support
140 Xilinx devices in 11 families, and are interested in adding
Altera support if the necessary data can be obtained.

Torc is available at http://torc.isi.edu.

8. ACKNOWLEDGMENTS
ISI wishes to thank our project sponsor. Thanks also to

our collaborators, including the Virginia Tech Configurable
Computing Lab; Brad Hutchings, Brent Nelson, and the
Brigham Young University Configurable Computing Lab;
and Vijeta Kashyap and the team at Interra Systems.

9. REFERENCES
[1] V. Betz and J. Rose. VPR: A new packing, placement

and routing tool for FPGA research. In W. Luk,
P. Y. K. Cheung, and M. Glesner, editors, Proceedings
of the 7th International Workshop on
Field-Programmable Logic and Applications, FPL
1997, (London), September 1–3, volume 1304 of
Lecture Notes in Computer Science, pages 213–222.
Springer Verlag, 1997.

[2] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh.
Lava: hardware design in Haskell. In ACM SIGPLAN
Notices, volume 34, pages 174–184, New York, NY,
1999. ACM.

[3] Electronic Industries Association. Electronic Design
Interchange Format, 1988.

[4] fpgaCAD. http://fpgacad.ece.wisc.edu.

[5] S. Guccione, D. Levi, and P. Sundararajan. JBits:
Java based interface for reconfigurable computing. In
Proceedings of the Second Annual Military and
Aerospace Applications of Programmable Devices and
Technologies Conference, MAPLD 1999, (Laurel,
Maryland), September 28–30, 1999.

[6] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan,
B. Nelson, B. Hutchings, and M. Wirthlin. A library
for low-level manipulation of partially
placed-and-routed FPGA designs. Technical report,
Brigham Young University, 2010.

[7] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, et al. The
Stratix II logic and routing architecture. In
Proceedings of the 2005 ACM/SIGDA 13th Annual
International Symposium on Field-Programmable Gate
Arrays, FPGA 2005 (Monterey, California), February
20–22, pages 14–20, 2005.

[8] L. McMurchie and C. Ebeling. PathFinder: A
negotiation-based performance-driven router for
FPGAs. In Proceedings of the 1995 ACM 3rd
International Symposium on Field-Programmable Gate
Arrays, FPGA 1995, (Monterey, California), February
12–14, pages 111–117, 1995.

[9] N. J. Nilsson. Principles of Artificial Intelligence.
Tioga Publishing Company, Palo Alto, California,
1980.

[10] N. Steiner and P. Athanas. Hardware autonomy and
space systems. In Proceedings of the 2009 IEEE
Aerospace Conference, (Big Sky, Montana), March
7–14, 2009.

[11] N. J. Steiner. A standalone wire database for routing
and tracing in Xilinx Virtex, Virtex-E, and Virtex-II
FPGAs. Master’s thesis, Virginia Tech, August 2002.

http://torc.isi.edu
http://fpgacad.ece.wisc.edu

	Introduction
	Background
	Design
	API
	Generic Netlist
	Physical Netlist
	Device Architecture
	Bitstream Interface

	Tools
	Unpacker and Packer
	Router

	Applications and Future Work
	Conclusion
	Acknowledgments
	References

